查看原文
其他

中科院新疆理化所马鹏程研究员:在导电玄武岩纤维材料的制备和应用领域研究取得突破

高分子科技 高分子科技
2024-09-08
点击上方“蓝字” 一键订阅

玄武岩纤维(Basalt fibre, BF)是一种由玄武岩为原料,通过熔融拉丝工艺制成的纤维材料。该纤维比普通的玻璃纤维相比具有更高的强度和模量、更宽的耐温范围;相比于碳纤维则具有更低的生产能耗和材料成本;玄武岩纤维还具有很好的抗腐蚀性、阻燃性等,生产过程环境友好(无含氮、含硫化合物的排放),因此被广泛地应用在过滤材料、建筑材料、纤维增强复合材料等领域。但玄武岩矿石属于绝缘材料,这一属性限制了相应的纤维材料在导电领域的应用。

近期,中科院新疆理化所马鹏程研究员领衔的复合材料团队在导电玄武岩纤维研究领域取得突破:课题组与德国德累斯顿莱布尼茨高分子研究所Edith Mäder教授合作,尝试以玄武岩纤维为基底,利用其本身含有的金属元素并采用化学气相沉积技术实现了不同碳纳米材料在玄武岩纤维表面的沉积和生长。研究结果表明通过控制实验条件,可高效、可控地在玄武岩表面生长出高温裂解碳纳米颗粒(PyC-BF)涂层或碳纳米管(CNT-BF),并实现了纤维由绝缘体向导体的转变


研究人员将PyC-BF和CNT-BF纤维束包埋在高分子树脂中,在拉伸条件下开展复合材料健康检测的研究。发现制备的纤维增强复合材料表现出明显的正压阻效应(即材料在外界负载条件下电阻增大,且在一定的应力范围内材料的电阻变化率与应变呈现线性关系);含纤维束的导电复合材料基本都是接近整个材料完全断裂时才变为不导电(应变约为4%);另外,在拉伸过程中,电阻变化会出现“台阶式”上升的行为,这表明内部纤维断裂是单根先后断裂的方式。含PyC-BF的复合材料表现出“斜台阶”方式(图1),而含CNT-BF的纤维材料表现出“直台阶”方式(图2),这与纤维表面的导电层组成、形貌,纤维和树脂之间形成的界面层和浸润性密切相关。相关研究结果发表在《复合材料A:应用科学与制造》(Composites Part A: Applied Science and Manufacturing)上。


图1含裂解碳涂层的玄武岩纤维及其纤维增强复合材料在压阻效应


图2含碳纳米管涂层的玄武岩纤维及其纤维增强复合材料的压阻效应


该项研究颠覆了传统玄武岩纤维是绝缘材料的概念,实现了导电玄武岩纤维的制备。研究成果有望在增加玄武岩纤维的功能价值、拓展其应用领域的同时,还提供了一种新的技术来实现层级结构纤维材料的制备,并可以作为一种潜在的纤维增强复合材料界面强度调节方法。相关科研成果应邀在2017年8月举办的“第21届国际复合材料大会(ICCM-21)”上作报告,向国际同行介绍课题组在上述领域的研究进展。


该项目得到在国家自然科学基金、国家“千人计划”、中德科研合作计划(PPP)等项目支持。


论文链接:

Hao B, Förster T, Mäder E, Ma PC*. Modification of basalt fibre using pyrolytic carbon coating for sensing application. Composites Part A: Applied Science and Manufacturing, 2017, 101, 123-128.

http://www.sciencedirect.com/science/article/pii/S1359835X17302385

高分子科技原创文章。欢迎个人转发和分享,刊物或媒体如需转载,请联系邮箱:info@polymer.cn

相关进展

中科院新疆理化所马鹏程研究员团队在功能型棉纱织物研究取得一系列重要进展

高分子科技

关注高分子科学技术  👉


长按二维码关注

诚邀投稿

欢迎专家学者提供稿件(论文、项目介绍、新技术、学术交流、单位新闻、参会信息、招聘招生等)至info@polymer.cn,并请注明详细联系信息。高分子科技®会及时推送,并同时发布在中国聚合物网上。

欢迎加入微信群 为满足高分子产学研各界同仁的要求,陆续开通了包括高分子专家学者群在内的几十个专项交流群,也包括高分子产业技术、企业家、博士、研究生、媒体期刊会展协会等群,全覆盖高分子产业或领域。目前汇聚了国内外高校科研院所及企业研发中心的上万名顶尖的专家学者、技术人员及企业家。

申请入群,请先加审核微信号chemshow (或长按下方二维码),并请一定注明:高分子+姓名+单位+职称(或学位)+领域(或行业),否则不予受理,资格经过审核后入相关专业群。

点击下方“阅读原文”查看更多


继续滑动看下一个
高分子科技
向上滑动看下一个

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存